Synthesis of Stable Cyclic Sulfinamides with a Hydroperoxy Function by Oxidation of Isothiazolium Salts

by Christine Hartung^a), Katrin Illgen^a), Joachim Sieler^b), Bernd Schneider^c), and Bärbel Schulze^a)*

^a) Institut für Organische Chemie, Universität Leipzig, Talstrasse 35, D-04103 Leipzig

^b) Institut für Anorganische Chemie, Universität Leipzig, Talstrasse 35, D-04103 Leipzig

^c) Max-Planck-Institut für Chemische Ökologie, Tatzendpromenade 1a, D-07745 Jena

The oxidation of isothiazolium salts 4 to stable 2-aryl-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1-oxides *rac-cis*-6 (sultims) as a new class of cyclic sulfinamides is described. The formations of the oxidation products *rac-cis*-6 as well as 3-hydroperoxy and 3-hydroxy sultams, 8 and 9, respectively, and isothiazol-3(2*H*)-one 1,1-dioxides 10 are presented.

Introduction. – The synthetic usefulness of the sulfinyl group for the control of numerous asymmetric reactions is well-documented in the literature [1]. The preparation of the chiral cyclic sulfinamide $\mathbf{1}$ was described in a series of recent publications. This novel source of chiral sulfoxides has been applied for the control of aldol condensations [2][3] and the asymmetric synthesis of amines [4].

 α -Sulfinyl-substituted radicals, prepared from the corresponding 5-phenylseleno compound **2**, undergo addition reactions with (alk-2-enyl)tributyltin derivatives to give 5-(alk-2-enyl)-2-(1-phenylethyl)isothiazolidin-3-one 1-oxides with excellent diastereo-selectivity [5][6]. Altering the stereochemical course of allylation reactions of cyclic α -sulfinyl radicals with diarylureas has been also investigated [7].

Here, we report the synthesis of stable 2-aryl-2,3,4,5,6,7-hexahydro-1,2-benzisothiazole 1-oxides **6** (sultims) with a hydroperoxy function (*cf. Scheme 2*), a new class of cyclic sulfinamides which combines chirality and oxidizing functionality. So far, only the application of oxaziridines **3** [8][9] as oxidants, derived from saccharine and 3-hydroperoxytoluene-2, α -sultams **8** has been described. Sultams **8** have been synthesized by oxidation of bicyclic isothiazolium salts **4** [10].

In the course of our study on the oxidation of isothiazolium salts 4, we have investigated the influence of the substituents of the 2-aryl ring and the stereochemical aspects of the formation of sultims 6 [11].

Results and Discussion. – The starting materials, bicyclic isothiazolium salts 4a-1, were prepared according to our reported synthesis by cyclocondensation of thiocyanates with anilines (*Scheme 1*) [12][13].

The oxidation of **4a**, and **4d** – **g**, containing electron-withdrawing substituents in the *ortho*-position of the 2-aryl ring ($\mathbf{R} = 2$ -halogen, 2-CF₃) with 30% H₂O₂ in AcOH at room temperature gave sultims *rac-cis*-**6a**, and **6d** – **g**, respectively, in moderate-to-good yield (42–70%; *Scheme 2* and *Table 1*). These stable compounds were identified by ¹H- and ¹³C-NMR spectra, and the *cis*-configuration was confirmed by X-ray crystal-structure analysis of **6a** (*cf. Fig.*). This result is contrary to our previous finding [10] that isothiazolium salts **4** with electron-donating substituents gave only sultams **8** in moderate-to-good yield, *e.g.*, 2-Me.

We suggested that the basicity of the aniline used for the preparation of salts 4 influenced the formation of the products. Sultims *rac-cis-6* were only obtained from salts 4 when the aniline had a low pK_a [14]. Consequently, we have chosen *meta-* and *para-*substituted anilines with low and high basicity (*Table 1*).

As expected, the oxidation of *para*- and *meta*-substituted salts **4b,c,h** (low pK_a) led to the formation of *rac-cis*-**6b,c,h** as the major products, respectively (*Table 1*). In these cases, *rac-cis*-**6** was obtained together with small amounts of **8**.

Entry	Substrate	R ^a)	pK_a of aniline	Reaction time [h]	Overall yield ^b) [%]	rac-cis- 6 [%]	8 [%]
1	4a	2,6-Cl ₂	0.00	3	42	42	
2	4b	4-COOH	2.42	3	42	38	4
3	4c	4-COOMe	2.47	3	57	54	3
4	4d	2-Br	2.53	3	80	70	10
5	4e	2-Cl	2.65	3	70	70	-
6	4f	$2-CF_3$	2.85	3	50	50	_
7	4g	2-F	3.20	3	43	43	-
8	4h	3-Br	3.58	3	62	58	4
9	4i	Н	4.63	24	54	-	54
10	4j	3-CH ₃	4.73	8 days ^c)	45	-	45
11	4k	4-CH ₃	5.08	24	63	-	63
12	41	4-OCH ₃	5.34	24	49	-	49

Table 1. Product Distribution of rac-cis-6 and 8 by the Oxidation of the Salts 4a - l with H_2O_2

^a) Arranged by increasing pK_a . ^b) Based on the used salts 4. ^c) At 5° (ice-bath).

Figure. Structure of rac-cis-6a

The oxidation of 4i - l under the same reaction conditions (see *Exper. Part*) resulted in the starting material or partly in decomposition (4j). Increasing the reaction time to 24 h led to the formation of the sultams 8i,k,l (see *Exper. Part*). Compound 8j was obtained after 8 days at 5° (ice-bath). For 8a - h, the reaction solution was stirred for 24 h at room temperature, without affording *rac-cis-6*. In this case, the sultams 8a - lwere isolated in moderate-to-good yield (40 - 76%).

The characteristic spectral data of *rac-cis*-**6a**-**h** are the chemical shifts of C(3) in ¹³C-NMR (CDCl₃/acetone), which appear at 97.0–103.1 ppm, and the SO absorption band at 1055–1060 cm⁻¹ in the IR spectra. The ¹³C chemical shifts of the C(3) of the corresponding 3-hydroperoxy sultams **8a**-**h** are at higher field (90.7–95.1 ppm), and the typical symmetrical and antisymmetrical SO₂ absorption bands in the IR spectra are at 1130–1170 and 1250–1305 cm⁻¹.

The *cis*-configuration of *rac-cis*-**6a** was confirmed by X-ray crystal-structure analysis (*Fig.*). The isothiazole ring of *rac-cis*-**6a** is planar with a flat endocyclic N-atom attached to the SO group. This was also observed for a 3-hydroperoxy sultam [10], and *Oppolzer et al.* described this for 2,3-dihydro-3-methyl-1,2-benzisothiazole 1-oxide [15]. The distance of N(1) in *rac-cis*-**6a** from the plane C(7), C(8), C(9), and S(1)¹) is -0.06 Å. The crystals of *rac-cis*-**6a** show an intermolecular H-bond between the sulfoxide O-atom and the H-atom of the HOO group of a second molecule *rac-cis*-**6a** (2.118 Å), but no intramolecular H-bond. The torsion angle between the isothiazole ring and the 2-aryl substituent is 93.2°.

The course of oxidation of the salts 4 likely begins with nucleophilic attack of H_2O_2 at C(3) of the salts 4. The electrostatic potentials of the isothiazolium salts 4 show a high positive charge at C(3), making it the preferred site for nucleophilic attack, whereas the S-atom displays a smaller electrostatic interaction with nucleophiles. The resulting intermediate 5 could not be isolated, but there is evidence by coupled HPLC-¹H-NMR for the existence of **5**. Being interested in intermediates of the oxidation of salts 4, we investigated the oxidation of 4e (R = 2-Cl): the reaction was monitored by HPLC to follow the conversion of **4e** to the oxidation products *rac-cis*-**6e**, *rac-cis*-**7e**, **8e**, 2-chloroaniline (decomposition product), and 3-oxo product 10e, and an unkown product. For this peak (t_R 5.39 min), the corresponding ¹H-NMR spectrum was recorded immediately after on-line transfer to the HPLC-NMR probe head. For H-C(3), a chemical shift at 6.51 ppm was detected. The measurement was repeated after different time intervals. A new signal appeared at 5.48 ppm and increased continuously during the next 5 h, concurrent with disappearance of the signal at 6.51 ppm. The comparison with a reference spectrum of *rac-cis*-3-hydroxy sultim **7e** [11], where we observed, for H-C(3), a signal at 5.48 ppm, indicated that **7e** was a follow-up product of the unknown compound (t_R 5.39 min) formed in the absence of H₂O₂. We assume that this compound is the 3-hydroperoxy derivative of 5e. The next step is the oxidation of sulfur, with formation of *rac-cis*- and *rac-trans*-3-hydroperoxy sultims 6. The isolation of up to 70% of *rac-cis-6* points to a stereoselective reaction. We suppose that the lone-pair orbital of the N-atom together with the 3-hydroperoxy group influences the *cis/trans*-stereoselectivity. Donor substituents of the 2-aryl ring in the salts $4\mathbf{j} - \mathbf{l}$ enhance the electron density in the isothiazole ring. This renders, first, C(3) less susceptible to the nucleophilic attack of H_2O_2 in 4 and intermediate 5, observable in a low rate of reaction. Second, the *trans*-attack in 5 is preferred because of the stabilization of the formed pseudo-axial periplanar S-O bond due to the anomeric effect of the N lone pair which is situated in a plane through the N-C bond perpendicular to the plane of the isothiazole ring [16] (Scheme 3). The rac-transsultimes **6** are more reactive than *rac-cis*-**6** and cannot be isolated. They are rapidly oxidized to give the sultams 8i - l.

Acceptor substituents reduce the electron density in the lone-pair orbital of the Natom. Hence, the nucleophilic attack at C(3) in 4a - h and at the S-atom in 5a - h is more convenient than with donor substituents. The smaller electron-density contribution of the lone pair of the N-atom prohibits the stabilization by the anomeric effect. Due to a H-bond between the HOO group and the oxidant on the *syn*-side of **5**, a *cis*-attack is

¹⁾ Arbitrary atom numbering in the Figure.

favored, and *rac-cis-***6** is formed (*Scheme 3*). *rac-cis-*Sultims **6a** – **h** are stable and can be isolated. Keeping the sultims *rac-cis-***6** in the reaction solution leads to oxidation to the corresponding sultams 8a - h.

Comparison of the isolated products, obtained by oxidation of salts 4, with respect to the pK_a values of the anilines used for their preparation shows that, with increase of the pK_a value, the stereoselectivity of the formation of 6 changes.

We have reported the conversion of hydroperoxides **8** by thermolysis in EtOH into the 3-oxo products **10** via elimination of H₂O. Compound **10** was also obtained by oxidation of 3-hydroxy sultams **9** with pyridinium dichromate in CH₂Cl₂ [10]. We now report an improved procedure by direct oxidation of salts **4** with H₂O₂ in AcOH at 80° which enhances the yield of **10** up to 81% (*Scheme 4*). Furthermore, we found that 3hydroxy sultams **9e** and **9i** produced by reduction of 3-hydroperoxy sultams **8e** and **8i**, respectively, with Na₂SO₃ [10] can be reoxidized with H₂O₂ (*Scheme 4*).

First attempts to use the new sulfinamides as oxidizing agents were carried out. Heteroatoms such as S and P were successfully oxidized, but the reaction conditions should be optimized and other applications investigated.

Conclusion. – In summary, it has been shown that in contrast to our earlier report [10], oxidation of some isothiazolium salts **4** with H_2O_2 in AcOH leads to stable 3-hydroperoxy-2-phenylhexahydro-1,2-benzisothiazole 1-oxides *rac-cis*-**6**. This new class of cyclic sulfinamides could be isolated in fair-to-good yields. A mechanism for the formation of the oxidation products in dependence of the substituents in the 2-aryl ring is proposed.

The financial support of this work by the *Deutsche Forschungsgemeinschaft* and the *Fonds der Chemischen Industrie* is gratefully acknowledged.

Experimental Part

General. M.p.: Boetius micro melting point apparatus; corrected. IR Spectra $[cm^{-1}]$: Genesis FTIR Unicam Analytical System (ATI Mattson); KBr pellets. ¹H-NMR Spectra: Varian Gemini-200 (at 200 MHz) and Varian Unity-400 (at 400 MHz); δ in ppm rel. to TMS as external standard, J in Hz. ¹³C-NMR Spectra: at 50 MHz and 100 MHz on the same spectrometers. MS: Quadrupol-MS VG 12-250 (VG. Instruments GmbH, Manchester Analytical) at 70 eV. Elemental analyses: Heraeus CHNO Rapid Analyzer.

1. 2-Aryl-4,5,6,7-tetrahydro-1,2-benzisothiazolium Perchlorates (4). The salts 4a, e, f, j were prepared according to [12]; 4i, l according to [13]; the new salts 4 according to [12]. 4b: 97%. Yellow crystals. M.p. 257–260°; 4c: 96%. Beige crystals. M.p. 232–234°; 4d: 72%. Beige crystals. M.p. 203–206°; 4g: 51%. Yellow crystals. M.p. 240–242°; 4h: 86%. Beige crystals. M.p.185–187°; 4k: 76%. Colorless crystals. M.p. 124–126°.

2. 2-Aryl-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1-Oxides (rac-cis-6). General Procedure. H_2O_2 (0.7 ml, 30%) was added to a stirred suspension of 4 (0.26 mmol) in AcOH (0.7 ml) at r.t. After dissolvation of 4, a colorless precipitate of *rac-cis*-6 was obtained which was immediately isolated; otherwise oxidation to 8 occurred. The isolated compounds *rac-cis*-6 were washed with H_2O and recrystallized from i-PrOH.

2-(2,6-Dichlorophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1-Oxide (rac-cis-**6a**): 42%. Colorless crystals. M.p. 131–134°. IR: 1060s (SO). ¹H-NMR (CDCl₃): 1.80 (m, 2 CH₂); 2.45 (m, 2 CH₂); 5.59 (s, H–C(3)); 7.29–7.49 (m, 3 arom. H); 8.87 (s, OOH). ¹³C-NMR (CDCl₃): 21.5, 21.9, 22.5, 24.1 (C(4), C(5), C(6), C(7)); 103.1 (C(3)); 129.5 (2 arom. C); 131.0, 137.1 (3 arom. CH); 139.1 (arom. C); 140.7 (C(3a)); 144.4 (C(7a)). EI-MS: 334 (M⁺⁺). Anal. calc. for C₁₃H₁₃Cl₂NO₃S (334.23): C 46.71, H 3.92, N 4.19, S 9.59, O 14.4; found: C 46.62, H 3.99, N 4.36, S 9.45, O 14.2.

2-(4-Carboxyphenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1-Oxide (rac-cis-**6b**): 30%. Colorless crystals M.p. 203–207°. IR: 1687s (CO), 1054s (SO). ¹H-NMR ((D₆)Acetone): 1.81 (m, 2 CH₂); 2.43 (m, 2 CH₂); 6.26 (s, H–C(3)); 7.40, 8.01 (J_{AB} = 9.0, 4 arom. H); 11.16 (s, OOH). ¹³C-NMR ((D₆)Acetone): 21.1, 21.3, 22.2, 23.6 (C(4), C(5), C(6), C(7)); 96.8 (C(3)); 116.2 (2 arom. CH); 124.6 (arom. C); 131.6 (2 arom. CH); 141.3 (arom. C); 142.0 (C(3a)); 146.6 (C(7a)); 166.9 (CO). EI-MS: 309 (M^{++}). Anal. calc. for C₁₄H₁₅NO₅S (309.37): C 54.35, H 4.90, N 4.53, S 10.36, O 25.9; found: C 54.11, H 4.87, N 4.42, S 10.59, O 26.1.

2,3,4,5,6,7-Hexahydro-3-hydroperoxy-2-[4-(methoxycarbonyl)phenyl]-1,2-benzisothiazole 1-Oxide (raccis-**6c**): 45%. Colorless crystals M.p. 120–124°. IR: 1713s (CO), 1059s (SO). ¹H-NMR ((D₆)Acetone): 1.81 (m, 2 CH₂); 2.43 (m, 2 CH₂); 3.86 (s, Me); 6.26 (s, H–C(3)); 7.40, 7.99 (J_{AB} = 8.6, 4 arom. H); 11.29 (s, OOH). ¹³C-NMR ((D₆)Acetone): 21.9, 22.2, 23.1, 24.5 (C(4), C(5), C(6), C(7)); 52.5 (Me); 97.8 (C(3)); 117.0 (2 arom. CH); 125.0 (arom. C); 132.1 (2 arom. CH); 142.1 (arom. C); 142.1 (C(3a)); 147.4 (C(7a)); 167.2 (CO). EI-MS: 323 (M^{++}). Anal. calc. for C₁₅H₁₇NO₅S (323.39): C 55.71, H 5.31, N 4.33, S 9.91, O 24.7; found: C 55.30, H 5.35, N 4.32, S 9.94, O 24.9.

2-(2-Bromophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1-Oxide (rac-cis-**6d**): 60%. Colorless crystals. M.p. 138–140°. IR: 1060s (SO). ¹H-NMR (CDCl₃): 1.85 (m, 2 CH₂); 2.46 (m, 2 CH₂); 5.72 (s, H–C(3)); 7.30 (m, 2 arom. H); 7.67 (m, 2 arom. H). ¹³C-NMR (CDCl₃): 21.6, 22.0, 22.5, 24.2 (C(4), C(5), C(6), C(7); 102.8 (C(3)); 125.2 (arom. C); 129.3, 130.8, 134.0, 134.6 (4 arom. CH); 139.1 (arom. C); 141.3 (C(3a)); 144.5 (C(7a)). EI-MS: 343/345 (M^{++}). Anal. calc. for C₁₃H₁₄BrNO₃S (344.24): C 45.35, H 4.11, N 4.07, S 9.31, O 13.9; found: C 45.40, H 3.99, N 4.02, S 9.45, O 14.1.

2-(2-Chlorophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1-Oxide (rac-cis-**6e**): 70%. Colorless crystals. M.p. 134-137°. IR: 1060s (SO). ¹H-NMR (CDCl₃): 1.83 (m, 2 CH₂); 2.45 (m, 2 CH₂); 5.70 (s, H–C(3)); 7.31 (m, 2 arom. H); 7.45 (m, 1 arom. H); 7.75 (m, 1 arom. H). ¹³C-NMR (CDCl₃): 21.5, 22.0, 22.5, 24.3 (C(4), C(5), C(6), C(7)); 102.5 (C(3)); 128.6 (arom. CH); 130.5 (arom. C); 130.7, 131.1, 134.6 (3 arom. CH); 137.2 (arom. C); 141.6 (C(3a)); 144.0 (C(7a)). EI-MS: 299 (M^{++}). Anal. calc. for C₁₃H₁₄CINO₃S (299.19): C 52.08, H 4.72, N 4.67, S 10.69, O 16.0; found: C 52.16, H 4.76, N 4.58, S 10.55, O 16.3.

2,3,4,5,6,7-Hexahydro-3-hydroperoxy-2-[2-(trifluoromethyl)phenyl]-1,2-benzisothiazole 1-Oxide (rac-cis-**6f**): 50%. Colorless crystals. M.p. 123–126°. IR: 1060s (SO). ¹H-NMR (CDCl₃): 1.82 (m, 2 CH₂); 2.46 (m, 2 CH₂); 5.63 (s, H–C(3)); 7.57 (m, 2 arom. H); 7.75 (m, 2 arom. H). ¹³C-NMR (CDCl₃): 21.6, 22.1, 22.6, 24.2 (C(4), C(5), C(6), C(7)); 103.0 (C(3)); 121.1 (arom. CH); 123.2 (CF₃); 127.8 (arom. C); 129.6, 133.6, 136.2 (3 arom. CH); 136.5 (arom. C); 141.3 (C(3a)); 145.1 (C(7a)). EI-MS: 333 (M^{++}). Anal. calc. for C₁₄H₁₄F₃NO₃S (333.35): C 50.44, H 4.24, N 4.20, S 9.62, O 14.0; found: C 50.28, H 4.09, N 4.14, S 9.71, O 14.2.

2-(2-Fluorophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1-Oxide (rac-cis-**6g**): 43%. Colorless crystals M.p. 110–113°. IR: 1055s (SO). ¹H-NMR ((D₆)Acetone): 1.79 (*m*, 2 CH₂); 2.41 (*m*, 2 CH₂); 5.94 (*s*, H–C(3)); 7.19–7.35 (*m*, 3 arom. H); 7.65 (*m*, 1 arom. H). ¹³C-NMR ((D₆)Acetone): 21.9, 22.3,

23.2, 24.7 (C(4), C(5), C(6), C(7)); 101.9 (C(3)); 117.3, 117.7, 126.1, 129.8 (4 arom. CH); 129.9, 131.7 (2 arom. C); 141.6 (C(3a)); 145.0 (C(7a)). EI-MS: 283 (M^{++}). Anal. calc. for C₁₃H₁₄FNO₃S (283.34): C 55.10, H 4.99, N 4.94, S 11.31, O 16.9; found: C 55.24, H 4.86, N 5.04, S 11.55, O 16.8.

2-(3-Bromophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1-Oxide (rac-cis-**6h**): 44%. Colorless crystals M.p. 116–120°. IR: 1059s (SO). ¹H-NMR ((D₆)Acetone): 1.80 (m, 2 CH₂); 2.42 (m, 2 CH₂); 6.20 (s, H–C(3)); 7.21–7.34 (m, 3 arom. H); 7.49 (br. s, 1 arom. H); 11.10 (s, OOH). ¹³C-NMR ((D₆)Acetone): 21.6, 21.8, 22.7, 24.1 (C(4), C(5), C(6), C(7)); 97.6 (C(3)); 116.9, 120.7 (2 arom. CH); 123.3 (arom. C); 126.1, 131.7 (2 arom. CH); 141.4 (arom. C); 142.6 (C(3a)); 144.6 (C(7a)). EI-MS: 343/345 (M^{++}). Anal. calc. for C₁₃H₁₄BrNO₃S (344.24): C 45.35, H 4.11, Br 23.18, N 4.07, S 9.31, O 13.9; found: C 45.11, H 4.12, Br 23.49, N 3.88, S 9.77, O 14.1.

3. 2-Aryl-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1,1-Dioxides (8). General Procedure. H₂O₂ (0.7 ml, 30%) was added at r.t. to a stirred suspension of $4\mathbf{a} - \mathbf{l}$ (0.26 mmol) in AcOH (0.7 ml). Precipitates formed during the oxidations of $4\mathbf{a} - \mathbf{h}$ were not isolated. After 24 h, colorless crystals of $8\mathbf{a} - \mathbf{l}$ were obtained, isolated, and recrystallized from EtOH. Compound $8\mathbf{i}$ was described in [10].

2-(2,6-Dichlorophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1,1-Dioxide (**8a**): 55%. Colorless crystals. M.p. 180–183°. IR: 1250s (SO₂), 1170s (SO₂). ¹H-NMR (CDCl₃): 1.86 (m, 2 CH₂); 2.55 (m, 2 CH₂); 5.81 (s, H–C(3)); 7.27–7.52 (m, 3 arom. H). ¹³C-NMR ((D₆)Acetone): 19.5, 21.4, 21.5, 23.5 (C(4), C(5), C(6), C(7)); 93.9 (C(3)); 129.7, 130.4 (3 arom. CH); 131.7 (2 arom. C); 137.6 (arom. C); 139.6 (C(3a)); 140.0 (C(7a)). EI-MS: 332 ([M – H₂O]⁺⁺). Anal. calc. for C₁₃H₁₃O₄Cl₂NS (350.23): C 44.57, H 3.74, N 4.00, S 9.2; found C 44.58, H 3.66, N 4.11, S 9.3.

2-(4-Carboxyphenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1,1-Dioxide (**8b**): 76%. Colorless crystals M.p. 216–220°. IR: 1286s (SO₂), 1155s (SO₂). ¹H-NMR ((D₆)Acetone): 1.84 (m, 2 CH₂); 2.44 (m, 2 CH₂); 6.40 (s, H–C(3)); 7.51, 8.06 (J_{AB} = 9.0, 4 arom. H); 11.37 (s, OOH). ¹³C-NMR ((D₆)Acetone): 19.2, 22.0, 22.2, 23.8 (C(4), C(5), C(6), C(7)); 90.8 (C(3)); 119.0 (2 arom. CH); 126.7 (arom. C); 132.1 (2 arom. CH); 136.5 (arom. C); 141.4 (C(3a)); 141.6 (C(7a)); 167.6 (CO). EI-MS: 307 ([M – H₂O]⁺⁺). Anal. calc. for C₁₄H₁₅NO₆S (325.36): C 51.68, H 4.66, N 4.31, S 9.85, O 29.5; found: C 51.36, H 5.02, N 4.01, S 9.43, O 29.8.

2,3,4,5,6,7-*Hexahydro-3-hydroperoxy-2-[4-(methoxycarbonyl)phenyl]-1,2-benzisothiazole 1,1-Dioxide* (8c): 58%. Colorless crystals M.p. 152–156°. IR: 1701*s* (CO), 1302*s* (SO₂), 1156*s* (SO₂). ¹H-NMR ((D₆)Acetone): 1.84 (*m*, 2 CH₂); 2.43 (*m*, 2 CH₂); 3.86 (*s*, Me); 6.39 (*s*, H–C(3)); 7.50, 8.03 (J_{AB} = 9.2, 4 arom. H); 11.49 (*s*, OOH). ¹³C-NMR ((D₆)Acetone): 18.3, 21.2, 21.3, 22.9 (C(4), C(5), C(6), C(7)); 51.8 (Me); 89.9 (C(3)); 118.1 (2 arom. CH); 125.5 (arom. C); 131.1 (2 arom. CH); 135.8 (arom. C); 140.9 (C(3a)); 141.0 (C(7a)). EI-MS: 321 ([$M - H_2O$]⁺⁺⁾. Anal. calc. for C₁₅H₁₇NO₆S (339.39): C 53.08, H 5.06, N 4.13, S 9.45, O 28.3; found: C 52.95, H 5.12, N 4.13, S 9.38, O 28.0.

2-(2-Bromophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1,1-Dioxide (8d): 43%. Colorless crystals. M.p. 172–175°. IR: 1270s (SO₂), 1140s (SO₂). ¹H-NMR ((D₆)Acetone): 1.84 (m, 2 CH₂); 2.44 (m, 2 CH₂); 6.02 (s, H–C(3)); 7.36–7.54 (m, 2 arom. H); 7.74–7.80 (m, 2 arom. H); 11.05 (s, OOH). ¹³C-NMR ((D₆)Acetone): 19.6, 22.2, 22.3, 24.1 (C(4), C(5), C(6), C(7)); 92.8 (C(3)); 127.2 (arom. C); 129.7, 130.2, 132.0, 133.4 (4 arom. CH); 135.0 (arom. C); 137.8 (C(3a)); 140.8 (C(7a)). EI-MS: 341/343 ([$M - H_2O$]⁺⁺). Anal. calc. for C₁₃H₁₄BrNO₄S (360.24): C 43.35, H 3.92, N 3.89, S 8.90; found: C 43.21, H 3.89, N 3.97, S 8.81.

2-(2-Chlorophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1,1-Dioxide (8e): 61%. Colorless crystals. M.p. 154–157°. IR: 1250s (SO₂), 1130s (SO₂). ¹H-NMR (CDCl₃): 1.86 (m, 2 CH₂); 2.36 (m, 2 CH₂); 5.74 (s, H–C(3)); 7.33–7.60 (m, 4 arom. H); 8.78 (s, OOH). ¹³C-NMR (CDCl₃): 19.3, 21.3, 21.4, 23.4 (C(4), C(5), C(6), C(7)); 94.6 (C(3)); 128.9, 131.3, 131.4 (3 arom. CH); 131.5 (arom. C); 133.7 (arom. CH); 136.2 (arom. C); 137.5 (C(3a)); 140.5 (C(7a)). EI-MS: 297 ($[M - H_2O]^+$). Anal. calc. for C₁₃H₁₄ClNO₄S (315.79): C 49.44, H 4.47, N 4.44, S 10.16; found C 49.32, H 4.40, N 4.29, S 10.10.

2,3,4,5,6,7-Hexahydro-3-hydroperoxy-2-[2-(trifluoromethyl)phenyl]-1,2-benzisothiazole 1,1-Dioxide (**8f**): 40%. Colorless crystals. M.p. 132–135°. IR: 1270s (SO₂), 1160s (SO₂). ¹H-NMR (CDCl₃): 1.82 (m, 2 CH₂); 2.50 (m, 2 CH₂); 5.64 (s, H–C(3)); 7.62 (m, 3 arom. H); 7.80 (d, 1 arom. H); 8.68 (br. s, OOH). ¹³C-NMR (CDCl₃): 19.4, 21.4, 21.5, 23.7 (C(4), C(5), C(6), C(7)); 91.9 (C(3)); 120.9 (CF₃); 126.4 (arom. CH); 128.2 (arom. C); 130.1, 133.7 (3 arom. CH); 133.8 (arom. C); 137.8 (C(3a)); 143.9 (C(7a)). EI-MS: 331 ([$M - H_2O$]⁺⁺). Anal. calc. for C₁₄H₁₄F₃NO₄S (349.35): C 48.13, H 4.04, N 4.01, S 9.2; found: C 48.13, H 4.02, N 4.30, S 9.3.

2-(2-Fluorophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1,1-Dioxide (**8g**): 45%. Colorless crystals. M.p. 132–134°. IR: 1290s (SO₂), 1160s (SO₂). ¹H-NMR ((D₆)Acetone): 1.83 (*m*, 2 CH₂); 2.43 (*m*, 2 CH₂); 5.98 (*s*, H–C(3)); 7.23–7.34 (*m*, 2 arom. H); 7.42–7.53 (*m*, 1 arom. H); 7.64–7.72 (*m*, 1 arom. H).

¹³C-NMR ((D₆)Acetone): 18.8, 21.3, 21.4, 23.1 (C(4), C(5), C(6), C(7)); 93.2 (C(3)); 117.1 (arom. CH); 122.7 (arom. C); 125.3, 130.7, 132.6 (3 arom. CH); 136.7 (C(3a)); 140.6 (C(7a)); 160.2 (arom. C). EI-MS: 281 ($[M - H_2O]^+$). Anal. calc. for C₁₃H₁₄FNO₄S (299.34): C 52.19, H 4.72, N 4.68, S 10.72; found: C 52.16, H 4.62, N 4.60, S 10.51.

2-(3-Bromophenyl)-2,3,4,5,6,7-hexahydro-3-hydroperoxy-1,2-benzisothiazole 1,1-Dioxide (8h): 56%. Colorless crystals M.p. 160–163°. IR: 1305s (SO₂), 1157s (SO₂). ¹H-NMR ((D₆)Acetone): 1.84 (m, 2 CH₂); 2.42 (m, 2 CH₂); 6.29 (s, H–C(3)); 7.34–7.51 (m, 3 arom. H); 7.64 (s, 1 arom. H); 11.40 (s, OOH). ¹³C-NMR ((D₆)Acetone): 19.3, 22.1, 22.2, 23.8 (C(4), C(5), C(6), C(7)); 91.3 (C(3)); 120.9 (arom. C); 123.4 (arom. C); 124.8, 128.7, 132.1 (3 arom. CH); 136.6 (arom. C); 138.8 (C(3a)); 141.6 (C(7a)). EI-MS: 341/343 ([$M - H_2O$]⁺⁺). Anal. calc. for C₁₃H₁₄BrNO₄S (360.24): C 43.34, H 3.93, Br 22.18, N 3.89, S 8.90, O 17.8; found: C 43.64, H 3.86, Br 22.39, N 3.97, S 8.58, O 17.6.

2,3,4,5,6,7-Hexahydro-3-hydroperoxy-2-(3-methylphenyl)-1,2-benzisothiazole 1,1-Dioxide (**8**): 42%. Colorless crystals M.p. 167–170°. IR: 1280s (SO₂), 1160s (SO₂). ¹H-NMR ((D₆)Acetone): 1.72–1.90 (m, 2 CH₂); 2.34 (s, Me); 2.31–2.49 (m, 2 CH₂); 6.18 (s, H–C(3)); 701–7.10 (m, 1 arom. H); 7.20–7.35 (m, 3 arom. H). ¹³C-NMR ((D₆)Acetone): 19.4, 21.9, 22.1, 22.3 (C(4), C(5), C(6), C(7)); 23.8 (Me); 92.1 (C(3)); 120.6, 124.0, 127.2, 130.2 (4 arom. CH); 136.8, 137.0 (2 arom. C); 140.2 (C(3a)); 141.5 (C(7a)). EI-MS: 277 ([$M - H_2O$]⁺·). Anal. calc. for C₁₄H₁₇NO₄S (295.38): C 56.92, H 5.81, N 4.74, S 10.85, O 21.7; found: C 56.80, H 5.76, N 4.99, S 10.83, O 21.6.

2,3,4,5,6,7-Hexahydro-3-hydroperoxy-2-(4-methylphenyl)-1,2-benzisothiazole 1,1-Dioxide (**8k**): 63%. Colorless crystals. M.p. 165–168°. IR: 1270s (SO₂), 1160s (SO₂). ¹H-NMR (CDCl₃): 1.82 (m, 2 CH₂); 2.35 (s, Me); 2.49 (m, 2 CH₂); 5.79 (s, H – C(3)); 7.20, 7.32 (J_{AB} = 8.2, 4 arom. H); 9.16 (br. s, OOH). ¹³C-NMR (CDCl₃): 19.1, 21.3, 21.4, 21.5, 23.4 (C(4), C(5), C(6), C(7), Me); 92.8 (C(3)); 124.5, 130.8 (4 arom. CH); 132.2, 137.0 (2 arom. C); 137.3 (C(3a)); 140.4 (C(7a)). EI-MS: 277 ([M – H₂O]⁺⁺). Anal. calc. for C₁₄H₁₇NO₄S (295.38): C 56.92, H 5.81, N 4.74, S 10.85, O 21.7; found: C 56.87, H 5.44, N 4.62, S 10.24, O 22.0.

2,3,4,5,6,7-Hexahydro-3-hydroperoxy-2-(4-methoxyphenyl)-1,2-benzisothiazole 1,1-Dioxide (**8**): 50%. Colorless crystals. M.p. 142–144°. IR: 1280s (SO₂), 1160s (SO₂). ¹H-NMR (CDCl₃): 1.82 (m, 2 CH₂); 2.50 (m, 2 CH₂); 3.80 (s, Me); 5.67 (s, H–C(3)); 6.93 (m, 2 arom. H); 7.36 (m, 2 arom. H). ¹³C-NMR (CDCl₃): 19.2, 21.4, 21.5, 23.5 (C(4), C(5), C(6), C(7)); 56.0 (Me); 93.9 (C(3)); 115.5 (2 arom. CH); 127.3 (arom. C); 128.7 (2 arom. CH); 137.2 (C(3a)); 140.4 (C(7a)); 159.7 (arom. C). EI-MS: 293 ([$M - H_2O$]⁺⁺). Anal. calc. for C₁₄H₁₇NO₅S (311.38): C 54.00, H 5.51, N 4.50, S 10.29; found C 54.01, H 5.79, N 4.56, S 9.99.

4. 2-Aryl-2,3,4,5,6,7-hexahydro-3-hydroxy-1,2-benzisothiazole 1,1-Dioxides (9). Compounds 9e and 9i were synthesized by reduction of 8e and 8i with Na₂SO₃ in H₂O according to [10].

2-(2-Chlorophenyl)-2,3,4,5,6,7-hexahydro-3-hydroxy-1,2-benzisothiazole 1,1-Dioxide (**9e**): 59%. Colorless crystals. M.p. 129–133°. IR: 1290s (SO₂), 1180s (SO₂). ¹H-NMR (CDCl₃): 1.84 (m, 2 CH₂); 2.49 (m, 2 CH₂); 3.21 (d, J = 10, OH); 5.61 (d, J = 10, H–C(3)); 7.38 (m, 2 arom. H); 7.54 (m, 2 arom. H). ¹³C-NMR (CDCl₃): 19.1, 21.5, 21.6, 23.5 (C(4), C(5), C(6), C(7)); 84.4 (C(3)); 128.4 (arom. CH); 130.7 (arom. C); 131.1, 131.4, 134.4 (3 arom. CH); 135.2 (arom. C); 136.2 (C(3a)); 143.3 (C(7a)). EI-MS: 299 (M^{++}). Anal. calc. for C₁₃H₁₄ClNO₃S (299.79): C 52.08, H 4.71, N 4.67, S 10.70; found: C 51.70, H 4.69, N 4.89, S 10.62.

2,3,4,5,6,7-*Hexahydro-3-hydroxy-2-phenyl-1,2-benzisothiazole 1,1-Dioxide* (**9i**): 52%. Colorless crystals. M.p. 143–145°. IR: 1280s (SO₂), 1140s (SO₂). ¹H-NMR ((D₆)Acetone): 1.82 (m, 2 CH₂); 2.44 (m, 2 CH₂); 5.90 (s, H–C(3)); 7.18–7.25 (m, 2 arom. H); 7.37–7.49 (m, 2 arom. H). ¹³C-NMR ((D₆)Acetone): 19.3, 22.1, 22.4, 23.8 (C(4), C(5), C(6), C(7)); 83.1 (C(3)); 122.3, 123.0, 130.4 (5 arom. CH); 134.5 (arom. C); 137.2 (C(3a)); 144.5 (C(7a)). EI-MS: 265 (M^{++}). Anal. calc. for C₁₃H₁₅NO₃S (265.35): C 58.85, H 5.70, N 5.28, S 12.09; found: C 58.78, H 5.64, N 5.12, S 12.17.

5. 2-Aryl-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1,1-Dioxides (10). General Procedure. H_2O_2 (3 ml, 30%) was added to a suspension of 4 (0.86 mmol) in AcOH (8 ml). The soln. was stirred for 2 to 3 h at 80°. After cooling, crystals were isolated and recrystallized from EtOH. Compounds 10i and 10i are described in [10].

 $\begin{array}{l} 2\mbox{-}(2,6\mbox{-}Dichlorophenyl)\mbox{-}4,5,6,7\mbox{-}tetrahydro\mbox{-}1,2\mbox{-}benzisothiazol\mbox{-}3(2H)\mbox{-}one\mbox{-}1,1\mbox{-}Dioxide\mbox{-}(10a)\mbox{:} 67\%\mbox{.} Colorless crystals. M.p. 185\mbox{-}188^\circ\mbox{.} IR: 1740s\mbox{(CO)}, 1310s\mbox{(SO}_2), 1170s\mbox{(SO}_2). ^1H\mbox{-}NMR\mbox{((D}_6)\mbox{-}Acetone)\mbox{:} 1.92\mbox{(}m, 2\mbox{ CH}_2)\mbox{;} 2.56\mbox{(}m, \mbox{CH}_2)\mbox{;} 2.68\mbox{(}m, \mbox{CH}_2)\mbox{;} 7.63\mbox{-}7.69\mbox{(}m, 3\mbox{ arom. H}\mbox{)}. ^{13}C\mbox{-}NMR\mbox{((D}_6)\mbox{-}Acetone)\mbox{:} 20.1, 21.4, 21.5, 21.8\mbox{(C(4)}, C(5), C(6), C(7))\mbox{;} 130.8\mbox{(} 2\mbox{ arom. C}\mbox{)}; 131.5, 134.0\mbox{(} 3\mbox{ arom. CH}\mbox{)}; 137.0\mbox{ (arom. C)}; 138.6\mbox{(C(3a))}; 149.3\mbox{(C(7a))}; 160.4\mbox{(C(3))}. EI-MS: 332\mbox{(}M^{++}\mbox{)}. Anal. calc. for C_{13}H_{11}Cl_2NO_3S\mbox{(} 332.21\mbox{)}: C\mbox{-}47.00\mbox{,} H\mbox{-}3.34\mbox{,} N\mbox{-}4.21\mbox{,} O\mbox{-}14.4\mbox{; found:} C\mbox{-}47.31\mbox{,} H\mbox{-}3.50\mbox{,} N\mbox{-}4.44\mbox{,} O\mbox{-}14.5\mbox{.} \end{array}$

2-(4-Carboxyphenyl)-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1,1-Dioxide (10b): 81%. Colorless crystals. M.p. 225 – 228°. IR: 1739s (CO), 1694s (CO), 1307s (SO₂), 1175s (SO₂). ¹H-NMR ((D₆)Acetone): 1.90

 $(m, 2 \text{ CH}_2)$; 2.52 (m, CH_2) ; 2.65 (m, CH_2) ; 7.66, 8.21 $(J_{AB} = 8.6, 4 \text{ arom. H})$. ¹³C-NMR $((D_6)\text{Acetone})$: 18.9, 20.5, 20.7, 21.0 (C(4), C(5), C(6), C(7)); 124.1 (arom. C); 127.4, 131.5 (4 arom. CH); 134.9 (arom. C); 137.1 (C(3a)); 146.5 (C(7a)); 160.0 (C(3)); 166.5 (CO). EI-MS: 307 (M^{++}) . Anal. calc. for C₁₄H₁₃NO₅S (307.34): C 54.71, H 4.27, N 4.56, S 10.43, O 26.0; found: C 54.54, H 4.36, N 4.49, S 10.61, O 26.1.

4,5,6,7-*Tetrahydro-2-(4-methoxycarbonyl)-1,2-benzisothiazol-3*(2H)-*one 1,1-Dioxide* (**10c**): 55%. Colorless crystals. M.p. 163–165°. IR: 1737s (CO), 1722s (CO), 1307s (SO₂), 1183s (SO₂). ¹H-NMR ((D₆)Acetone): 1.92 (*m*, 2 CH₂); 2.53 (*m*, CH₂); 2.66 (*m*, CH₂); 3.92 (*s*, Me); 7.67, 8.18 (J_{AB} = 8.7, 4 arom. H). ¹³C-NMR ((D₆)Acetone): 19.8, 21.4, 21.5, 21.9 (C(4), C(5), C(6), C(7)); 53.0 (Me); 128.1 (2 arom. CH); 131.8 (arom. C); 131.9 (2 arom. CH); 135.7 (arom. C); 137.8 (C(3a)), 147.2 (C(7a)); 160.6 (C(3)); 166.7 (CO). EI-MS: 321 (M^{++}). Anal. calc. for C₁₅H₁₅NO₅S (321.37): C 56.06, H 4.71, N 4.36, S 9.98, O 24.9; found: C 55.53, H 4.74, N 4.35, S 10.13, O 25.2.

2-(2-Bromophenyl)-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1,1-Dioxide (**10d**): 52%. Colorless crystals. M.p. 170–173°. IR: 1740s (CO), 1330s (SO₂), 1170s (SO₂). ¹H-NMR (CDCl₃): 1.89 (m, 2 CH₂); 2.54 (m, CH₂); 2.68 (m, CH₂); 7.44 (m, 3 arom. H); 7.76 (m, 1 arom. H). ¹³C-NMR (CDCl₃): 19.7, 21.0, 21.3, 22.0 (C(4), C(5), C(6), C(7)); 125.6 (arom. C); 128.7, 129.2, 132.4, 132.6 (4 arom. CH); 134.8 (arom. C); 136.6 (C(3a)); 147.0 (C(7a)); 159.3 (C(3)). EI-MS: 341/343 (M^{++}). Anal. calc. for C₁₃H₁₂BrNO₃S (342.22): C 45.62, H 3.54, N 4.09, S 9.37, O 14.0; found: C 45.76, H 3.38, N 4.20, S 10.12, O 14.1.

2-(2-Chlorophenyl)-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1,1-Dioxide (**10e**): 71%. Colorless crystals. M.p. 139–142°. IR: 1740s (CO), 1330s (SO₂), 1170s (SO₂). ¹H-NMR (CDCl₃): 1.89 (m, 2 CH₂); 2.53 (m, CH₂); 2.67 (m, CH₂); 7.39–7.60 (m, 4 arom. H). ¹³C-NMR (CDCl₃): 19.7, 21.0, 21.2, 21.3 (C(4), C(5), C(7)); 126.9, 128.5 (2 arom. CH); 131.5 (arom. C); 132.2, 132.5 (2 arom. CH); 135.6 (arom. C); 136.6 (C(3a)); 147.5 (C(7a)); 159.4 (C(3)). EI-MS: 297 (M^{++}). Anal. calc. for C₁₃H₁₂CINO₃S (297.77): C 52.43, H 4.07, N 4.70, O 16.1; found: C 52.66, H 3.57, N 4.73, O 16.2.

4,5,6,7-*Tetrahydro-2-[2-(trifluoromethyl)phenyl]-1,2-benzisothiazol-3*(2H)-*one* 1,1-*Dioxide* (10f): 67%. Colorless crystals. M.p. 167–170°. IR: 1740s (CO), 1320s (SO₂), 1160s (SO₂). ¹H-NMR (CDCl₃): 1.89 (m, 2 CH₂); 2.52 (m, CH₂); 2.69 (m, CH₂); 7.54 (m, 1 arom. H); 7.68 (m, 2 arom. H); 7.84 (m, 1 arom. H). ¹³C-NMR (CDCl₃): 19.7, 20.9, 21.3, 21.6 (C(4), C(5), C(6), C(7)); 120.4 (CF₃); 125.8 (arom. CH); 129.0 (arom. C); 131.4, 131.5, 133.4 (3 arom. CH); 133.7 (arom. C); 136.6 (C(3a)); 147.9 (C(7a)); 160.6 (C(3)). EI-MS: 331 (M^{++}). Anal. calc. for C₁₄H₁₂F₃NO₃S (331.33): C 50.75, H 3.65, N 4.23, S 9.68; found: C 50.41, H 3.62, N 4.30, S 9.49.

2-(2-Fluorophenyl)-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1,1-Dioxide (**10g**): 50%. Colorless crystals. M.p. 136–140°. IR: 1732s (CO), 1336s (SO₂), 1180s (SO₂). ¹H-NMR (CDCl₃): 1.86 (m, 2 CH₂); 2.53 (m, CH₂); 2.65 (m, CH₂); 7.31 (m, 2 arom. H); 7.44 (m, 2 arom. H). ¹³C-NMR (CDCl₃): 19.6, 20.9, 21.1, 21.2 (C(4), C(5), C(6), C(7)); 117.5, 117.9, 125.6, 131.9 (4 arom. CH); 132.7 (arom. C); 136.8 (C(3a)); 147.7 (C(7a)); 159.8 (C(3)); 161.2 (arom. C). MS: 281 (M^{++}). Anal. calc. for C₁₃H₁₂FNO₃S (281.32): C 55.50, H 4.30, N 4.98, S 11.40; found: C 55.31, H 4.19, N 4.76, S 11.23.

2-(3-Bromophenyl)-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1,1-Dioxide (**10h**): 50%. Colorless crystals M.p. 120–122°. IR: 1735s (CO), 1325s (SO₂), 1181s (SO₂). ¹H-NMR ((D₆)Acetone): 1.91 (m, 2 CH₂); 2.52 (m, CH₂); 2.65 (m, CH₂); 7.50–7.56 (m, 2 arom. H); 7.68–7.76 (m, 2 arom. H). ¹³C-NMR ((D₆)Acetone): 19.8, 21.4, 21.6, 21.9 (C(4), C(5), C(6), C(7)); 123.4 (arom. C); 127.9, 131.8, 132.6 (3 arom. CH); 132.7 (arom. C); 133.6 (arom. CH); 137.8 (C(3a)); 147.2 (C(7a)); 160.7 (C(3)). EI-MS: 341/343 (M^{++}). Anal. calc. for C₁₃H₁₂BrNO₃S (342.22): C 45.62, H 3.54, Br 23.35, N 4.09, S 9.37, O 14.0; found: C 45.36, H 3.63, Br 23.06, N 4.04, S 9.58, O 14.3.

2-(3-Methylphenyl)-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1,1-Dioxide (10j): 72%. Colorless crystals. M.p. 159–160°. IR: 1731s (CO), 1321s (SO₂), 1180s (SO₂). ¹H-NMR ((D₆)Acetone): 1.91 (*m*, CH₂); 2.39 (*s*, Me); 2.50 (*m*, CH₂); 2.64 (*m*, CH₂); 7.24–7.44 (*m*, 4 arom. H). ¹³C-NMR ((D₆)Acetone): 19.5, 20.9, 21.0, 21.3 (C(4), C(5), C(6), C(7)); 21.8 (Me); 125.6, 129.2 (2 arom. CH); 129.4 (arom. C); 130.0, 131.0 (2 arom. CH); 136.7 (arom. C); 140.4 (C(3a)); 146.6 (C(7a)); 160.3 (C(3)). EI-MS: 277 (M^{++}). Anal. calc. for C₁₄H₁₅NO₃S (277.37): C 60.62, H 5.46, N 5.05, S 11.56, O 17.3; found: C 60.71, H 5.52, N 5.23, S 11.98, O 17.5.

2-(4-Methylphenyl)-4,5,6,7-tetrahydro-1,2-benzisothiazol-3(2H)-one 1,1-Dioxide (**10k**): 51%. Colorless crystals M.p. 175–177°. IR: 1730s (CO), 1330s (SO₂), 1180s (SO₂). ¹H-NMR ((D₆)Acetone): 1.90 (m, 2 CH₂); 2.40 (s, Me); 2.50 (m, CH₂); 2.63 (m, CH₂); 7.32, 7.37 ($J_{AB} = 8.6, 4 \text{ arom. H}$). ¹³C-NMR ((D₆)Acetone): 18.9, 20.5, 20.7, 20.8, 21.0 (C(4), C(5), C(6), C(7), Me); 127.5 (arom. C); 128.7, 130.7 (4 arom. CH); 136.8 (arom. C); 140.2 (C(3a)); 146.5 (C(7a)); 160.2 (C(3)). EI-MS: 277 (M^{++}). Anal. calc. for C₁₄H₁₅NO₃S (277.34): C 60.63, H 5.45, N 5.05, S 11.56; found: C 60.29, H 5.72, N 5.82, S 11.29.

6. *HPLC-¹H-NMR Measurements:* A *Merck-Hitachi LiChrograph L-6200A* gradient pump was fitted with a *Bruker DRX 500* NMR spectrometer (4-mm inverse-detection LC probe head, detection volume 120 μl).

¹H-NMR Spectra were measured at 500.13 MHz. Suppression of MeCN and residual HDO signals was performed by presaturation. For calibration, the suppressed signal of MeCN was set to 2.0 ppm. Column: *Knaur Lichrospher 100 RP-18* (5 μ m); 250 × 4 mm. Eluent: D₂O/MeCN 1:1, each solvent contains 0.1% of TFA. UV: 210 nm, 0.8 ml min⁻¹, stopped-flow mode.

7. X-Ray Crystal-Structure Determination of $6a^2$) Crystals were obtained from EtOH. The intensities were collected on a STADI 4 diffractometer (Stoe). Data collection and refinement parameters are listed in Table 2. The structure was solved by direct methods with SHELXS86 [17], the refinement was performed with SHELXL93 [18].

Table 2. Crystallographic Data for Compound 6a

	6a		
Empirical formula	C ₁₃ H ₁₃ Cl ₂ NO ₃ S		
Formula weight	334.20		
Crystal color, habit	colorless, prism		
Crystal temp. [K]	293		
Radiation, wavelength [Å]	MoK_a , 0.71069		
Crystal dimensions [mm]	$0.29 \times 0.26 \times 0.18$		
Crystal system	triclinic		
Space group	$P\bar{1}$		
Z	2		
Reflections for cell determination	80		
2θ range for cell determination [°]	$20 < 2\theta < 46$		
Unit cell parameters a [Å]	$8.080(2) \alpha [^{\circ}] 76.54(2)$		
b [Å]	9.451 (2) β [°] 87.06 (2)		
	$9.947(3) \gamma [^{\circ}] 84.77(2)$		
V[Å ³]	735.3(3)		
$D \left[Mg/m^3 \right]$	1.509		
Absorption coefficient μ [mm ⁻¹]	0.588		
Transmission factors (min, max)	0.90; 0.85		
Scan type	$\omega/2\theta$		
$2\theta (\text{max}) [^{\circ}]$	50		
Total reflections measured	3631		
Symmetry-independent reflections	2605		
Reflections observed $(I > 2\sigma(I))$	2111		
Variables	218		
Final R indices $[I > 2\sigma(I)]$	$R_1 = 0.0416 \ \omega R_2 = 0.1147$		
R indices (all data)	$R_1 = 0.555 \ \omega R_2 = 0.1245$		
$\Delta \rho$ (max, min) [e Å ⁻³]	0.698, -0.377		
Goodness of fit s	1.071		

REFERENCES

- [1] M. Carmen Carreño, Chem. Rev. 1995, 95, 1717.
- [2] R. J. Butlin, I. D. Linney, D. J. Critcher, M. F. Mahon, K. C. Molloy, M. Wills, J. Chem Soc., Perkin Trans. 1 1993, 1581.
- [3] M. Wills, R. J. Butlin, I. D. Linney, R. W. Gibson, J. Chem. Soc., Perkin Trans. 1 1991, 3383.
- [4] D. R. J. Hose, T. Raynham, M. Wills, Tetrahedron: Asymmetry 1993, 4, 2159.
- [5] A. Waldner, Tetrahedron Lett. 1989, 30, 3061.
- [6] A. Waldner, A. De Mesmaeker, P. Hoffmann, T. Mindt, T. Winkler, Synlett 1991, 101.
- [7] D. P. Curran, L. Huang Kuo, J. Org. Chem. 1994, 59, 3259.

²) Further details are available upon request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein Leopoldshafen, on quoting the deposition No. 406998, the names of the authors, and journal citation.

- [8] F. A. Davis, J. C. Towson, D. B. Vashi, R. ThimmaReddy, J. P. McCauley, M. E. Harakal, D. J. Gosciniak, J. Org. Chem. 1990, 55, 1254.
- [9] F. A. Franklin, R. Thimma Reddy, J. P. McCauley, R. M. Przesławski, M. E. Harakal, P. J. Carroll, J. Org. Chem. 1991, 56, 809.
- [10] B. Schulze, S. Kirrbach, K. Illgen, P. Fuhrmann, Tetrahedron 1996, 52, 783.
- [11] K. Illgen, Ch. Hartung, R. Herzschuh, B. Schulze, Molecules 1996, 1, 139.
- [12] B. Schulze, B. Friedrich, S. Wagner, P. Fuhrmann, J. Prakt. Chem. 1996, 338, 424.
- [13] B. Schulze, U. Obst, G. Zahn, B. Friedrich, R. Cimiraglia, H.-J. Hofmann, J. Prakt. Chem. 1995, 337, 175.
- [14] 'Handbook of Chemistry and Physics', Ed. D. R. Lide, CRC-Press, Boca Raton, Ann Arbor, Boston, 1990-1991, Kap. 8, pp. 33-35.
- [15] W. Oppolzer, M. Wills, C. Starkemann, G. Bernardinelli, Tetrahedron Lett. 1990, 31, 4117.
- [16] C. Chapuis, J.-Y. de Saint Laumer, M. Marty, Helv. Chim. Acta 1997, 80, 146.
- [17] Sheldrick, G. M. SHELXS-86, Program for the solution of crystal structures, Göttingen 1986.
- [18] Sheldrick, G. M. SHELXL-93, Program for the refinement of crystal structures, Göttingen 1993.

Received February 9, 1999